Contract Overview
Balance:
0 MATIC
My Name Tag:
Not Available
Latest 1 internal transaction
Parent Txn Hash | Block | From | To | Value | |||
---|---|---|---|---|---|---|---|
0x48fe1ebad4249488d23b7941ad42b9abd06bdf02d1289d269bbb920392f9a61b | 33299943 | 8 days 13 hrs ago | 0x04db4aa6545a51139a0c001584ef06f921ecbd6e | Contract Creation | 0 MATIC |
[ Download CSV Export ]
Contract Source Code Verified (Exact Match)
Contract Name:
PermissiveAccount
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; import "./Helpers.sol"; /** * Basic account implementation. * this contract provides the basic logic for implementing the IAccount interface - validateUserOp * specific account implementation should inherit it and provide the account-specific logic */ abstract contract BaseAccount is IAccount { using UserOperationLib for UserOperation; //return value in case of signature failure, with no time-range. // equivalent to _packValidationData(true,0,0); uint256 constant internal SIG_VALIDATION_FAILED = 1; /** * return the account nonce. * subclass should return a nonce value that is used both by _validateAndUpdateNonce, and by the external provider (to read the current nonce) */ function nonce() public view virtual returns (uint256); /** * return the entryPoint used by this account. * subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /** * Validate user's signature and nonce. * subclass doesn't need to override this method. Instead, it should override the specific internal validation methods. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external override virtual returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); if (userOp.initCode.length == 0) { _validateAndUpdateNonce(userOp); } _payPrefund(missingAccountFunds); } /** * ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal virtual view { require(msg.sender == address(entryPoint()), "account: not from EntryPoint"); } /** * validate the signature is valid for this message. * @param userOp validate the userOp.signature field * @param userOpHash convenient field: the hash of the request, to check the signature against * (also hashes the entrypoint and chain id) * @return validationData signature and time-range of this operation * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature(UserOperation calldata userOp, bytes32 userOpHash) internal virtual returns (uint256 validationData); /** * validate the current nonce matches the UserOperation nonce. * then it should update the account's state to prevent replay of this UserOperation. * called only if initCode is empty (since "nonce" field is used as "salt" on account creation) * @param userOp the op to validate. */ function _validateAndUpdateNonce(UserOperation calldata userOp) internal virtual; /** * sends to the entrypoint (msg.sender) the missing funds for this transaction. * subclass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again) * @param missingAccountFunds the minimum value this method should send the entrypoint. * this value MAY be zero, in case there is enough deposit, or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success,) = payable(msg.sender).call{value : missingAccountFunds, gas : type(uint256).max}(""); (success); //ignore failure (its EntryPoint's job to verify, not account.) } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /** * returned data from validateUserOp. * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData` * @param aggregator - address(0) - the account validated the signature by itself. * address(1) - the account failed to validate the signature. * otherwise - this is an address of a signature aggregator that must be used to validate the signature. * @param validAfter - this UserOp is valid only after this timestamp. * @param validaUntil - this UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } //extract sigFailed, validAfter, validUntil. // also convert zero validUntil to type(uint48).max function _parseValidationData(uint validationData) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } // intersect account and paymaster ranges. function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) { ValidationData memory accountValidationData = _parseValidationData(validationData); ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData); address aggregator = accountValidationData.aggregator; if (aggregator == address(0)) { aggregator = pmValidationData.aggregator; } uint48 validAfter = accountValidationData.validAfter; uint48 validUntil = accountValidationData.validUntil; uint48 pmValidAfter = pmValidationData.validAfter; uint48 pmValidUntil = pmValidationData.validUntil; if (validAfter < pmValidAfter) validAfter = pmValidAfter; if (validUntil > pmValidUntil) validUntil = pmValidUntil; return ValidationData(aggregator, validAfter, validUntil); } /** * helper to pack the return value for validateUserOp * @param data - the ValidationData to pack */ function _packValidationData(ValidationData memory data) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * helper to pack the return value for validateUserOp, when not using an aggregator * @param sigFailed - true for signature failure, false for success * @param validUntil last timestamp this UserOperation is valid (or zero for infinite) * @param validAfter first timestamp this UserOperation is valid */ function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp the operation that is about to be executed. * @param userOpHash hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call. * The excess is left as a deposit in the entrypoint, for future calls. * can be withdrawn anytime using "entryPoint.withdrawTo()" * In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero. * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external returns (uint256 validationData); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * validate aggregated signature. * revert if the aggregated signature does not match the given list of operations. */ function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view; /** * validate signature of a single userOp * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp the userOperation received from the user. * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig" */ function validateUserOpSignature(UserOperation calldata userOp) external view returns (bytes memory sigForUserOp); /** * aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation * @param userOps array of UserOperations to collect the signatures from. * @return aggregatedSignature the aggregated signature */ function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./UserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; interface IEntryPoint is IStakeManager { /*** * An event emitted after each successful request * @param userOpHash - unique identifier for the request (hash its entire content, except signature). * @param sender - the account that generates this request. * @param paymaster - if non-null, the paymaster that pays for this request. * @param nonce - the nonce value from the request. * @param success - true if the sender transaction succeeded, false if reverted. * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution). */ event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed); /** * account "sender" was deployed. * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow. * @param sender the account that is deployed * @param factory the factory used to deploy this account (in the initCode) * @param paymaster the paymaster used by this UserOp */ event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster); /** * An event emitted if the UserOperation "callData" reverted with non-zero length * @param userOpHash the request unique identifier. * @param sender the sender of this request * @param nonce the nonce used in the request * @param revertReason - the return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason); /** * signature aggregator used by the following UserOperationEvents within this bundle. */ event SignatureAggregatorChanged(address indexed aggregator); /** * a custom revert error of handleOps, to identify the offending op. * NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero) * @param reason - revert reason * The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. */ error FailedOp(uint256 opIndex, string reason); /** * error case when a signature aggregator fails to verify the aggregated signature it had created. */ error SignatureValidationFailed(address aggregator); /** * Successful result from simulateValidation. * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) */ error ValidationResult(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo); /** * Successful result from simulateValidation, if the account returns a signature aggregator * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator) * bundler MUST use it to verify the signature, or reject the UserOperation */ error ValidationResultWithAggregation(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo, AggregatorStakeInfo aggregatorInfo); /** * return value of getSenderAddress */ error SenderAddressResult(address sender); /** * return value of simulateHandleOp */ error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult); //UserOps handled, per aggregator struct UserOpsPerAggregator { UserOperation[] userOps; // aggregator address IAggregator aggregator; // aggregated signature bytes signature; } /** * Execute a batch of UserOperation. * no signature aggregator is used. * if any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops the operations to execute * @param beneficiary the address to receive the fees */ function handleOps(UserOperation[] calldata ops, address payable beneficiary) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts) * @param beneficiary the address to receive the fees */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * generate a request Id - unique identifier for this request. * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. */ function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32); /** * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp. * @dev this method always revert. Successful result is ValidationResult error. other errors are failures. * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data. * @param userOp the user operation to validate. */ function simulateValidation(UserOperation calldata userOp) external; /** * gas and return values during simulation * @param preOpGas the gas used for validation (including preValidationGas) * @param prefund the required prefund for this operation * @param sigFailed validateUserOp's (or paymaster's) signature check failed * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range) * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range) * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; bool sigFailed; uint48 validAfter; uint48 validUntil; bytes paymasterContext; } /** * returned aggregated signature info. * the aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * this method always revert, and returns the address in SenderAddressResult error * @param initCode the constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; /** * simulate full execution of a UserOperation (including both validation and target execution) * this method will always revert with "ExecutionResult". * it performs full validation of the UserOperation, but ignores signature error. * an optional target address is called after the userop succeeds, and its value is returned * (before the entire call is reverted) * Note that in order to collect the the success/failure of the target call, it must be executed * with trace enabled to track the emitted events. * @param op the UserOperation to simulate * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult * are set to the return from that call. * @param targetCallData callData to pass to target address */ function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external; }
// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.12; /** * manage deposits and stakes. * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account) * stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited( address indexed account, uint256 totalDeposit ); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); /// Emitted when stake or unstake delay are modified event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); /// Emitted once a stake is scheduled for withdrawal event StakeUnlocked( address indexed account, uint256 withdrawTime ); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit the entity's deposit * @param staked true if this entity is staked. * @param stake actual amount of ether staked for this entity. * @param unstakeDelaySec minimum delay to withdraw the stake. * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps) * and the rest fit into a 2nd cell. * 112 bit allows for 10^15 eth * 48 bit for full timestamp * 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint112 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } //API struct used by getStakeInfo and simulateValidation struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /// @return info - full deposit information of given account function getDepositInfo(address account) external view returns (DepositInfo memory info); /// @return the deposit (for gas payment) of the account function balanceOf(address account) external view returns (uint256); /** * add to the deposit of the given account */ function depositTo(address account) external payable; /** * add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * attempt to unlock the stake. * the value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * withdraw from the (unlocked) stake. * must first call unlockStake and wait for the unstakeDelay to pass * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * withdraw from the deposit. * @param withdrawAddress the address to send withdrawn value. * @param withdrawAmount the amount to withdraw. */ function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; } /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { function getSender(UserOperation calldata userOp) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly {data := calldataload(userOp)} return address(uint160(data)); } //relayer/block builder might submit the TX with higher priorityFee, but the user should not // pay above what he signed for. function gasPrice(UserOperation calldata userOp) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) { //lighter signature scheme. must match UserOp.ts#packUserOp bytes calldata sig = userOp.signature; // copy directly the userOp from calldata up to (but not including) the signature. // this encoding depends on the ABI encoding of calldata, but is much lighter to copy // than referencing each field separately. assembly { let ofs := userOp let len := sub(sub(sig.offset, ofs), 32) ret := mload(0x40) mstore(0x40, add(ret, add(len, 32))) mstore(ret, len) calldatacopy(add(ret, 32), ofs, len) } } function hash(UserOperation calldata userOp) internal pure returns (bytes32) { return keccak256(pack(userOp)); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: SEE LICENSE IN LICENSE pragma solidity ^0.8.19; import "@account-abstraction/contracts/core/BaseAccount.sol"; import "../interfaces/IPermissiveAccount.sol"; import "@account-abstraction/contracts/interfaces/IEntryPoint.sol"; import "../interfaces/Permission.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; contract PermissiveAccount is BaseAccount, IPermissiveAccount, Ownable { using ECDSA for bytes32; mapping(address => uint256) public remainingFeeForOperator; mapping(address => uint256) public remainingValueForOperator; mapping(address => bytes32) public operatorPermissions; IEntryPoint private immutable _entryPoint; uint96 private _nonce; bool private _initialized; constructor(address __entryPoint) { _entryPoint = IEntryPoint(__entryPoint); } /* GETTERS */ function nonce() public view override returns (uint256) { return _nonce; } function entryPoint() public view override returns (IEntryPoint) { return _entryPoint; } /* EXTERNAL FUNCTIONS */ function initialize(address owner) external { require(!_initialized, "Contract already initialized"); _initialized = true; _transferOwnership(owner); } function setOperatorPermissions( address operator, bytes32 merkleRootPermissions, uint256 maxValue, uint256 maxFee ) external { _requireFromEntryPointOrOwner(); bytes32 oldValue = operatorPermissions[operator]; operatorPermissions[operator] = merkleRootPermissions; remainingFeeForOperator[operator] = maxFee; remainingValueForOperator[operator] = maxValue; emit OperatorMutated(operator, oldValue, merkleRootPermissions); } function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external override(BaseAccount, IAccount) returns (uint256 validationData) { _requireFromEntryPoint(); if (userOp.initCode.length == 0) { _validateAndUpdateNonce(userOp); } bytes32 hash = userOpHash.toEthSignedMessageHash(); if (owner() != hash.recover(userOp.signature)) { (, , , Permission memory permission, bytes32[] memory proof) = abi .decode( userOp.callData[4:], (address, uint256, bytes, Permission, bytes32[]) ); if (permission.operator != hash.recover(userOp.signature)) validationData = SIG_VALIDATION_FAILED; _validateMerklePermission(permission, proof); _validatePermission(userOp, permission); if ( missingAccountFunds > remainingFeeForOperator[permission.operator] ) { revert ExceededFees( missingAccountFunds, remainingFeeForOperator[permission.operator] ); } remainingFeeForOperator[permission.operator] -= missingAccountFunds; } _payPrefund(missingAccountFunds); } function execute( address dest, uint256 value, bytes memory func, Permission calldata permission, // stores the proof, only used in validateUserOp bytes32[] calldata ) external { _requireFromEntryPointOrOwner(); if (msg.sender != owner()) { if (permission.expiresAtUnix != 0) { if (block.timestamp >= permission.expiresAtUnix) revert ExpiredPermission( block.timestamp, permission.expiresAtUnix ); } else if (permission.expiresAtBlock != 0) { if (block.number >= permission.expiresAtBlock) revert ExpiredPermission( block.number, permission.expiresAtBlock ); } } (bool success, bytes memory result) = dest.call{value: value}(func); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } /* INTERNAL */ function _validatePermission( UserOperation calldata userOp, Permission memory permission ) internal { (address to, uint256 value, bytes memory callData, , ) = abi.decode( userOp.callData[4:], (address, uint256, bytes, Permission, bytes32[]) ); if (permission.to != to) revert InvalidTo(to, permission.to); if (remainingValueForOperator[permission.operator] < value) revert ExceededValue( value, remainingValueForOperator[permission.operator] ); remainingValueForOperator[permission.operator] -= value; if (permission.selector != bytes4(callData)) revert InvalidSelector(bytes4(callData), permission.selector); if (permission.expiresAtUnix != 0 && permission.expiresAtBlock != 0) revert InvalidPermission(); if (permission.paymaster != address(0)) { address paymaster = address(0); assembly { let paymasterOffset := calldataload(add(userOp, 288)) paymaster := calldataload(add(paymasterOffset, add(userOp, 20))) } if (paymaster != permission.paymaster) revert InvalidPaymaster(paymaster, permission.paymaster); } } function _validateMerklePermission( Permission memory permission, bytes32[] memory proof ) public view { bytes32 permHash = keccak256( abi.encode( permission.operator, permission.to, permission.selector, permission.paymaster, permission.expiresAtUnix, permission.expiresAtBlock ) ); bool isValidProof = MerkleProof.verify( proof, operatorPermissions[permission.operator], permHash ); if (!isValidProof) revert InvalidProof(); } function _requireFromEntryPointOrOwner() internal view { require( msg.sender == address(entryPoint()) || msg.sender == owner(), "account: not from EntryPoint or owner" ); } function _validateSignature( UserOperation calldata userOp, bytes32 userOpHash ) internal view override returns (uint256 validationData) { bytes32 hash = userOpHash.toEthSignedMessageHash(); if (owner() != hash.recover(userOp.signature)) return SIG_VALIDATION_FAILED; return 0; } function _validateAndUpdateNonce( UserOperation calldata userOp ) internal override { require(++_nonce == userOp.nonce, "account: invalid nonce"); } function _payPrefund(uint256 missingAccountFunds) internal override { if (missingAccountFunds != 0) { (bool success, ) = payable(msg.sender).call{ value: missingAccountFunds, gas: type(uint256).max }(""); (success); } } // solhint-disable-next-line no-empty-blocks receive() external payable {} }
// SPDX-License-Identifier: SEE LICENSE IN LICENSE pragma solidity ^0.8.19; import "@account-abstraction/contracts/interfaces/IAccount.sol"; import "./Permission.sol"; interface IPermissiveAccount is IAccount { error InvalidProof(); error NotAllowed(address); error InvalidTo(address provided, address expected); error ExceededValue(uint256 value, uint256 max); error ExceededFees(uint256 fee, uint256 maxFee); error InvalidPermission(); error InvalidPaymaster(address provided, address expected); error InvalidSelector(bytes4 provided, bytes4 expected); error ExpiredPermission(uint current, uint expiredAt); event OperatorMutated( address operator, bytes32 oldPermissions, bytes32 newPermissions ); function initialize(address owner) external; function setOperatorPermissions( address operator, bytes32 merkleRootPermissions, uint256 maxValue, uint256 maxFee ) external; }
// SPDX-License-Identifier: SEE LICENSE IN LICENSE pragma solidity ^0.8.19; struct Permission { // the operator address operator; // the address allowed to interact with address to; // the function selector bytes4 selector; // specific arguments that are allowed for this permisison (see readme) // bytes allowed_arguments; address paymaster; // the timestamp when the permission isn't valid anymore // @dev can be 0 if expires_at_block != 0 uint256 expiresAtUnix; // the block when the permission isn't valid anymore // @dev can be 0 if expires_at_unix != 0 uint256 expiresAtBlock; }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"__entryPoint","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"fee","type":"uint256"},{"internalType":"uint256","name":"maxFee","type":"uint256"}],"name":"ExceededFees","type":"error"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"max","type":"uint256"}],"name":"ExceededValue","type":"error"},{"inputs":[{"internalType":"uint256","name":"current","type":"uint256"},{"internalType":"uint256","name":"expiredAt","type":"uint256"}],"name":"ExpiredPermission","type":"error"},{"inputs":[{"internalType":"address","name":"provided","type":"address"},{"internalType":"address","name":"expected","type":"address"}],"name":"InvalidPaymaster","type":"error"},{"inputs":[],"name":"InvalidPermission","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[{"internalType":"bytes4","name":"provided","type":"bytes4"},{"internalType":"bytes4","name":"expected","type":"bytes4"}],"name":"InvalidSelector","type":"error"},{"inputs":[{"internalType":"address","name":"provided","type":"address"},{"internalType":"address","name":"expected","type":"address"}],"name":"InvalidTo","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"NotAllowed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bytes32","name":"oldPermissions","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"newPermissions","type":"bytes32"}],"name":"OperatorMutated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes4","name":"selector","type":"bytes4"},{"internalType":"address","name":"paymaster","type":"address"},{"internalType":"uint256","name":"expiresAtUnix","type":"uint256"},{"internalType":"uint256","name":"expiresAtBlock","type":"uint256"}],"internalType":"struct Permission","name":"permission","type":"tuple"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"_validateMerklePermission","outputs":[],"stateMutability":"view","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dest","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"func","type":"bytes"},{"components":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes4","name":"selector","type":"bytes4"},{"internalType":"address","name":"paymaster","type":"address"},{"internalType":"uint256","name":"expiresAtUnix","type":"uint256"},{"internalType":"uint256","name":"expiresAtBlock","type":"uint256"}],"internalType":"struct Permission","name":"permission","type":"tuple"},{"internalType":"bytes32[]","name":"","type":"bytes32[]"}],"name":"execute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"nonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"operatorPermissions","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"remainingFeeForOperator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"remainingValueForOperator","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bytes32","name":"merkleRootPermissions","type":"bytes32"},{"internalType":"uint256","name":"maxValue","type":"uint256"},{"internalType":"uint256","name":"maxFee","type":"uint256"}],"name":"setOperatorPermissions","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"missingAccountFunds","type":"uint256"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60a060405234801561001057600080fd5b5060405161174238038061174283398101604081905261002f91610099565b61003833610049565b6001600160a01b03166080526100c9565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6000602082840312156100ab57600080fd5b81516001600160a01b03811681146100c257600080fd5b9392505050565b6080516116506100f260003960008181610242015281816108970152610cd801526116506000f3fe6080604052600436106100c65760003560e01c80638da5cb5b1161007f578063b0d691fe11610059578063b0d691fe14610233578063c4d66de814610266578063ea1efff414610286578063f2fde38b146102a657600080fd5b80638da5cb5b146101b6578063926b3dfa146101e8578063affed0e01461021557600080fd5b80633a871cdd146100d25780635fe4efb614610105578063715018a614610132578063749cd99514610149578063769e531b14610176578063869181281461019657600080fd5b366100cd57005b600080fd5b3480156100de57600080fd5b506100f26100ed366004611048565b6102c6565b6040519081526020015b60405180910390f35b34801561011157600080fd5b506100f26101203660046110c1565b60026020526000908152604090205481565b34801561013e57600080fd5b50610147610524565b005b34801561015557600080fd5b506100f26101643660046110c1565b60016020526000908152604090205481565b34801561018257600080fd5b50610147610191366004611195565b610538565b3480156101a257600080fd5b506101476101b1366004611391565b610645565b3480156101c257600080fd5b506000546001600160a01b03165b6040516001600160a01b0390911681526020016100fc565b3480156101f457600080fd5b506100f26102033660046110c1565b60036020526000908152604090205481565b34801561022157600080fd5b506004546001600160601b03166100f2565b34801561023f57600080fd5b507f00000000000000000000000000000000000000000000000000000000000000006101d0565b34801561027257600080fd5b506101476102813660046110c1565b61071a565b34801561029257600080fd5b506101476102a13660046113e0565b610793565b3480156102b257600080fd5b506101476102c13660046110c1565b610816565b60006102d061088c565b6102dd604085018561141b565b90506000036102ef576102ef84610904565b6000610348846040517f19457468657265756d205369676e6564204d6573736167653a0a3332000000006020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b905061039861035b61014087018761141b565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525085939250506109969050565b6001600160a01b03166103b36000546001600160a01b031690565b6001600160a01b031614610513576000806103d1606088018861141b565b6103df916004908290611462565b8101906103ec919061148c565b9450945050505061044487806101400190610407919061141b565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525087939250506109969050565b6001600160a01b031682600001516001600160a01b03161461046557600193505b61046f8282610645565b61047987836109bc565b81516001600160a01b03166000908152600160205260409020548511156104e25781516001600160a01b0316600090815260016020526040908190205490516357fef51960e11b81526104d9918791600401918252602082015260400190565b60405180910390fd5b81516001600160a01b03166000908152600160205260408120805487929061050b908490611536565b909155505050505b61051c83610bd6565b509392505050565b61052c610c23565b6105366000610c7d565b565b610540610ccd565b6000546001600160a01b031633146105cb57608083013515610591578260800135421061058c57604051634203b3b960e01b8152426004820152608084013560248201526044016104d9565b6105cb565b60a0830135156105cb578260a0013543106105cb57604051634203b3b960e01b815243600482015260a084013560248201526044016104d9565b600080876001600160a01b031687876040516105e79190611549565b60006040518083038185875af1925050503d8060008114610624576040519150601f19603f3d011682016040523d82523d6000602084013e610629565b606091505b50915091508161063b57805160208201fd5b5050505050505050565b81516020808401516040808601516060870151608088015160a089015193516000976106b49790969591016001600160a01b03968716815294861660208601526001600160e01b031993909316604085015293166060830152608082019290925260a081019190915260c00190565b60408051601f19818403018152918152815160209283012085516001600160a01b031660009081526003909352908220549092506106f490849084610d68565b905080610714576040516309bde33960e01b815260040160405180910390fd5b50505050565b600454600160601b900460ff16156107745760405162461bcd60e51b815260206004820152601c60248201527f436f6e747261637420616c726561647920696e697469616c697a65640000000060448201526064016104d9565b6004805460ff60601b1916600160601b17905561079081610c7d565b50565b61079b610ccd565b6001600160a01b038416600081815260036020908152604080832080549088905560018352818420869055600283529281902086905580519384529083018290528201859052907fdcd45556838facc5052adb56ffd031a070dc3ea40214cb9fe9a4cdc48c70ffaf9060600160405180910390a15050505050565b61081e610c23565b6001600160a01b0381166108835760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016104d9565b61079081610c7d565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146105365760405162461bcd60e51b815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e740000000060448201526064016104d9565b6004805460208301359190600090610924906001600160601b0316611578565b91906101000a8154816001600160601b0302191690836001600160601b0316021790556001600160601b0316146107905760405162461bcd60e51b81526020600482015260166024820152756163636f756e743a20696e76616c6964206e6f6e636560501b60448201526064016104d9565b60008060006109a58585610d7e565b915091506109b281610dc3565b5090505b92915050565b600080806109cd606086018661141b565b6109db916004908290611462565b8101906109e8919061148c565b5050925092509250826001600160a01b031684602001516001600160a01b031614610a3f57602084015160405163dd2a304560e01b81526001600160a01b03808616600483015290911660248201526044016104d9565b83516001600160a01b0316600090815260026020526040902054821115610a9f5783516001600160a01b03166000908152600260205260409081902054905163cbaaf65b60e01b81526104d9918491600401918252602082015260400190565b83516001600160a01b031660009081526002602052604081208054849290610ac8908490611536565b90915550610ad790508161159e565b6001600160e01b03191684604001516001600160e01b03191614610b3057610afe8161159e565b6040808601519051632f43bccf60e11b81526001600160e01b03199283166004820152911660248201526044016104d9565b608084015115801590610b46575060a084015115155b15610b6457604051634345326f60e11b815260040160405180910390fd5b60608401516001600160a01b031615610bcf576060840151610120860135860160140135906001600160a01b03808316911614610bcd57606085015160405163548f165960e11b81526001600160a01b03808416600483015290911660248201526044016104d9565b505b5050505050565b801561079057604051600090339060001990849084818181858888f193505050503d8060008114610bcf576040519150601f19603f3d011682016040523d82523d6000602084013e610bcf565b6000546001600160a01b031633146105365760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016104d9565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480610d0e57506000546001600160a01b031633145b6105365760405162461bcd60e51b815260206004820152602560248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74206f722060448201526437bbb732b960d91b60648201526084016104d9565b600082610d758584610f0d565b14949350505050565b6000808251604103610db45760208301516040840151606085015160001a610da887828585610f52565b94509450505050610dbc565b506000905060025b9250929050565b6000816004811115610dd757610dd76115d5565b03610ddf5750565b6001816004811115610df357610df36115d5565b03610e405760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064016104d9565b6002816004811115610e5457610e546115d5565b03610ea15760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016104d9565b6003816004811115610eb557610eb56115d5565b036107905760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b60648201526084016104d9565b600081815b84518110156109b257610f3e82868381518110610f3157610f316115eb565b6020026020010151611016565b915080610f4a81611601565b915050610f12565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610f89575060009050600361100d565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610fdd573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166110065760006001925092505061100d565b9150600090505b94509492505050565b6000818310611032576000828152602084905260409020611041565b60008381526020839052604090205b9392505050565b60008060006060848603121561105d57600080fd5b833567ffffffffffffffff81111561107457600080fd5b8401610160818703121561108757600080fd5b95602085013595506040909401359392505050565b6001600160a01b038116811461079057600080fd5b80356110bc8161109c565b919050565b6000602082840312156110d357600080fd5b81356110418161109c565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff8111828210171561111d5761111d6110de565b604052919050565b600082601f83011261113657600080fd5b813567ffffffffffffffff811115611150576111506110de565b611163601f8201601f19166020016110f4565b81815284602083860101111561117857600080fd5b816020850160208301376000918101602001919091529392505050565b6000806000806000808688036101408112156111b057600080fd5b87356111bb8161109c565b965060208801359550604088013567ffffffffffffffff808211156111df57600080fd5b6111eb8b838c01611125565b965060c0605f19840112156111ff57600080fd5b60608a0195506101208a013592508083111561121a57600080fd5b828a0192508a601f84011261122e57600080fd5b823591508082111561123f57600080fd5b508960208260051b840101111561125557600080fd5b60208201935080925050509295509295509295565b600060c0828403121561127c57600080fd5b60405160c0810181811067ffffffffffffffff8211171561129f5761129f6110de565b60405290508082356112b08161109c565b815260208301356112c08161109c565b602082015260408301356001600160e01b0319811681146112e057600080fd5b60408201526112f1606084016110b1565b60608201526080830135608082015260a083013560a08201525092915050565b600082601f83011261132257600080fd5b8135602067ffffffffffffffff82111561133e5761133e6110de565b8160051b61134d8282016110f4565b928352848101820192828101908785111561136757600080fd5b83870192505b848310156113865782358252918301919083019061136d565b979650505050505050565b60008060e083850312156113a457600080fd5b6113ae848461126a565b915060c083013567ffffffffffffffff8111156113ca57600080fd5b6113d685828601611311565b9150509250929050565b600080600080608085870312156113f657600080fd5b84356114018161109c565b966020860135965060408601359560600135945092505050565b6000808335601e1984360301811261143257600080fd5b83018035915067ffffffffffffffff82111561144d57600080fd5b602001915036819003821315610dbc57600080fd5b6000808585111561147257600080fd5b8386111561147f57600080fd5b5050820193919092039150565b600080600080600061014086880312156114a557600080fd5b85356114b08161109c565b945060208601359350604086013567ffffffffffffffff808211156114d457600080fd5b6114e089838a01611125565b94506114ef8960608a0161126a565b935061012088013591508082111561150657600080fd5b5061151388828901611311565b9150509295509295909350565b634e487b7160e01b600052601160045260246000fd5b818103818111156109b6576109b6611520565b6000825160005b8181101561156a5760208186018101518583015201611550565b506000920191825250919050565b60006001600160601b0380831681810361159457611594611520565b6001019392505050565b805160208201516001600160e01b031980821692919060048310156115cd5780818460040360031b1b83161693505b505050919050565b634e487b7160e01b600052602160045260246000fd5b634e487b7160e01b600052603260045260246000fd5b60006001820161161357611613611520565b506001019056fea26469706673582212201c6609bc3ff764381ed2424de937c1eb64b12b50ed90013dbfd408600e0ff1cc64736f6c634300081300330000000000000000000000000576a174d229e3cfa37253523e645a78a0c91b57
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000576a174d229e3cfa37253523e645a78a0c91b57
-----Decoded View---------------
Arg [0] : __entryPoint (address): 0x0576a174d229e3cfa37253523e645a78a0c91b57
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000576a174d229e3cfa37253523e645a78a0c91b57
Age | Block | Fee Address | BC Fee Address | Voting Power | Jailed | Incoming |
---|